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SUMMARY 

The boundary-layer growth near the equator of an impulsively rotated sphere is considered numerically and 
analytically. The numerical work is highly suggestive of the presence of a singularity at a finite time at which 
two of the velocity components and the swirl displacement thickness become infinite. Details of an analytic 
investigation are presented which is consistent with the gross features of the numerical results. Brief conside- 
ration is also given to the flow near the equators of impulsively rotated spheroids and it is shown that the 
relevant boundary-layer equations for this class of bodies can be written in the same form as those for the sphere. 

1. Introduction 

There are a number o f  situations in which two streams of  fluid, emanating from two distinct 

regions, meet and proceed as a single flow. A very simple example concerns the steady flow past 

a finite flat plate aligned parallel to the oncoming stream: the fluid on one side meets the fluid 

from the other side (again) at the trailing edge forming the wake. Other and more complicated 

examples are common: if we consider the steady uniform flow past a sphere for Reynolds num- 

ber not small the region of  separation can be regarded as the junction of  two flows, one of  

which is at some stage in the neighbourhood of  the front stagnation point and the other being 

the reversed flow which passes near the rear stagnation point. 

An essential feature in each of  these examples is the fact that the fluid leaves the rigid body 

concerned in a fairly abrupt manner. An example without this feature, in which two laminar 

boundary layers meet and proceed smoothly, occurs at a three-dimensional stagnation point 

where the geometry is of  saddle type. It is found (Davey [1]) that providing c, which is related 

to the two velocity components of  the outer flow, is suitably restricted the confluence and de- 

velopment o f  the flow proceeds without (a) any discontinuities or (b) the ejection of  boundary- 

layer fluid into the main stream. 

However, it is well-known that if the potential flow details are used for a steady boundary 

layer with an imposed adverse pressure gradient, then there is a singularity at the position at 

which reversed flow is assumed to ftrst occur and the calculation cannot be continued. 

Another approach is to consider the unsteady flow generated by the impulsive motion of  a 

body. The archetypal problem that has been considered in this category is the circular cylinder 

which is impulsively started in a direction perpendicular to its axis. From the boundary-layer 

equations the early motion is determined using the method of  Blasius [2], but the results are 
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valid only for small time. Apart from the large-time analysis of Proudman and Johnson [3], at 

times of O(1) and larger the flow properties are derived numerically by using finite-differences 
etc. A numerical investigation into the flow development on an impulsively started circular 
cylinder has been reported by Telionis and Tsahalis [4] in which an 'upwind' finite-difference 
scheme was used; in this way they were able to integrate the boundary-layer equations for times 
not small and were able to track the movement of the point on the cylinder which separates 
forward and backward flow. They found evidence to suggest that a singularity occurred for all 
t > t s (t  s ~ 0.6 if suitably non-dimensionalised) although it did not occur at the position of zero 
skin-friction, but was displaced slightly towards the rear stagnation point. No analytic support 
was presented and the evidence for the singularity was tentative. It is therefore clear that 
further work on this problem rerrtains to be done to confirm, or otherwise, the existence, and 
examine the analytical structure, of such a singularity. 

However, there are a number of situations, albeit of different type, in which the collision 
position in an unsteady development is fixed for all time which clearly offers great advantages 
in any examination of the resulting particular structure. One of these concerns the flow at the 
equator of a rotating sphere. The sphere of radius a is assumed to rotate with angular velocity 
~2 about a diameter in otherwise stationary fluid of kinematic viscosity v, and because of the 
secondary flow generated, fluid moves in boundary layers (provided R = a 2 ~2/v >> 1) over both 
hemispheres towards the equator where an inevitable collision results. Although the flow 
properties over most of the sphere, such as the velocity field and drag etc., are believed known, 
no analytical or numerical details are available in the collision and consequent eruption region. 

The advantage of the rotating sphere as a vehicle for the investigation of the unsteady colli- 
sion process lies in the symmetry of the problem: the collision location is fixed at the equator 
for all time. The present work is concerned with the flow development at the equator of an 
impulsively rotated sphere. It should be stressed however that the collision of the boundary 
layers at the sphere equator clearly cannot be considered as being in any way analogous to the 
junction of the boundary-layer flow at the position of zero skin-friction on an impulsively started 
circular cylinder, although where the results of Telionis and Tsahalis and those reported here 
appear to have features in common we shall merely note the fact without further comment. 

The work of Smith and Duck [5] is concerned with the flow near the equator of a rotating 
sphere, but they consider the steady flow structure which involves effects of order higher than 
that of first-order boundary-layer theory. The present work, on the other hand, is within the 
framework of first-order boundary-layer theory. 

In Section 2 the problem of the boundary-layer development on an impulsively rotated 
sphere is posed and the form of the early motion is given. Equations for the local behaviour at 
the equator are also derived and a series solution for the early flow development is obtained in 
which the first four non-zero terms are found. Section 3 is concerned with the fmite-difference 
representation and the numerical results are presented in graphical and tabular form in Section 
4. A property of the numerical solution is that the normal velocity at the edge of the boundary- 
layer appears to become singular at a Finite time. Section 5 is concerned with an analytical 
description of the inviscid region in the neighbourhood of the singularity. Graphs are presented 
which strongly support the structure proposed. 

Journal o f  Engineering Math., Vol. 13 (1979) 193-212 



Fhe collision o f  unsteady laminar boundary layers 195 

2. Equations of  motion 

Referred to spherical polar co-ordinates (r, 0, 4) where r is the distance from the sphere centre, 
0 is the polar angle measured from the axis o f  rotation and ~ is the azimuthal angle and with 

the assumption of  rotational symmetry the boundary-layer equations are 

0u 0u u 3u v 2 cot0  02u 
0t  + w-~-  + = v - - -  a 00 a Or 2 ' 

Ov Ov u av uvcotO OZv 
o-3-+ w - f f  + a T ~  + - -  - v - -  (1)  a ~)r 2 ' 

1 0u uco t0  0w 
- - ~ + ~ + - -  = 0 ,  
a 00 a 0r 

where w, u and v are the velocity components in the directions of  increasing r, 0 and ~b respec- 

tively, and a is the radius of  the sphere. The initial and boundary conditions are 

t < 0 :  u = v = w = O ,  

J u = w = O ,  v=a~2sinO on r=a, (2) 
t > O :  

u , v ~ O  as r - ~ ,  

corresponding to the sphere being given an impulsive angular velocity ~2 about the polar axis. 
The solution of  equations (1) subject to (2) for T = ~2t small was first considered by Nigam 

and Rangasami [6] and later by Banks [7]. It can be inferred from these investigations that the 

solution is of  the form 
1 

u = a~2#(1 - / a  2 ~ T(fo (7/) + T 2 If2, (r/) +/a2f22 (77)1 + T 4 If41 (17) +/-t2f42 (1/) + 

+ u*A3(n)] + . . .  ~, 
1 

v = a~(1  - / l  2 )~ { go (r/) + T 2 [g21 (r/) +/a2g22 (r/)] + T* [g41 07) +/-t2g42 (17) + 
(3)  

+ u4g43(n)] + . . .  }, 

w = ( ~ }  T ~ / ' { ( 1  - 3 u 2 ) h o ( , 7 )  + T2[ (1  - 3 u 2 ) h ~ , ( n )  + U ' ( 3  - 5 u ' ) h , , ( n ) ]  + 

- [ - . . .  } ,  

(r - a)/(vt)" . The initial functions of  7/in the above series are deter- where/~ = cos 0 and r/= 

mined by the equations 

L o g o  = 0 ,  L i f o  = - 4 g ~ ,  h ~ - 2 f o = 0 ,  

(2hogo, L2(g21,g22) = ' ' -6hogo + 8fogo), (4) 

r3 ( f2 , ,  f22) = (-8gog2, + 2hofo - 4f~o, - 8gog22 - 6hofg + 8fg), 

h~,  - f~ ,  = O, h;~ - 2A~ = O, 

* We note that the form of the solution implies that u(r, O) = -u(r, rr-0), v(r, O) = v(r, ~r-0), w(r, O)= 
w(r, 7r-O), and in particular that u(r, n/2) = 0. 
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subject to the boundary conditions 

go(O) = 1, g~,(O) =g~(O)  = 0, 

/ o ( O )  = / ~ ,  ( o )  = / = ( o )  = 0 ,  

g0(oo) = g v  (oo) = g ~  (oo) = 0, f0 (oo) =A,  (oo) = / =  (,,o) = 0, 

ho(O) = h2,(O) = h22 (0) = 0, 

(5) 

where 

d 2 d 
L n=- dr12 + 2 r l ~ - 4 n .  

()Ur _ _  _ U l2  _ / / 2  _ 

aT 

av' , ao' ~2v' 
+ w - -  - -  (8) 

8T ~z az 2 ' 

0w p 
u' - - -  = 0 ,  

az 

Analytical expressions for the functions go, fo, ho were obtained by Nigam and Rangasami 
while Banks obtained expressions for g21 and g22 in terms of  other known functions. The 
details are not given here, but,the principal properties are 

go'(O) = -2 /x /n ,  fo'(O) = 4(1 - 2/n)/X/Ir, 

h0(oo) = 4(2/n + 1 - ~/2)/(3x/lr), (6) 

g~l (0) = - {35/18 + [ -19  + 42 X/3/5]/Tr - 256/451r2)}/x/rr, 

g~2(0) = {61/18 - [ 1 1 5 / 3  - 66X/3/5]/n + 512/(45rr2)}/x/~r. 

No further analytical results are known for the higher-order terms. Although in principle 
further terms could be found, in practice the amount of  algebra increases so rapidly that such 
an approach becomes prohibitive: even with an automatic computer the wisdom of  proceeding 

in this way must be questionable in view of  the unknown degree of  convergence. Further work 
must clearly be by way of  finite-differences or their equivalent. 

However, the region of  interest is at the equator where/2 is smaU and a useful preliminary 

study would appear to be a local investigation of  the flow structure there. Specifically we infer 

from equations (3) that for small T, the solution is of  the form 

u = aS2~'(z, T )+OO2) ,  

v = a~v'(z, T) + 0082), (7) 
1 

w = ( v ~ ) '  w'(z, 13 + ooa2), 

where 
l p W I z = (r - a) (~2/v) ~ and u', v ,  satisfy 

au r a2u ~ 
+ w 

Oz Oz: ' 
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with appropriate initial and boundary conditions 

T = O :  u ' = v ' = w ' = O ,  

[ ,  u =w =0, v ' = l  on z = 0 ,  
I t T > 0 :  ~ u , v  -->0 as z~oo.  

197 

(9) 

Such an investigation whereby a local (or asymptotic) solution is sought is not novel of 
course, although it must be borne in mind that the interpretation of results so obtained may be 
questionable for T-+ 0% as is usual in any double-limiting procedure. It may be anticipated that 
the shape of the sphere near the poles will affect the details of the flow pattern at the equator 
but the assumption here is that the character of the flow at the equator is independent of any 
changes in the body shape in the polar regions. 

It is possible to determine the effect of certain equatorial variations in the shape of the body 
on the flow at the equator by considering the boundary-layer growth at the equators of spheroids. 
The equations analogous to (8) are derived in the Appendix for rotating spheroids. It will be 
seen that the influence of equatorial body shape is indeed simply one of degree rather than 
character; it is shown that the boundary-layer equations for the equator flow due to prolate 
and oblate spheroids coincides with (8) providing the time variable is transformed suitably. As 
one might reasonably expect on physical grounds, the time is stretched for prolate spheroids 
and contracted for oblate spheroids. In short, we may expect that for T not too large the 
results will be of some value in discussing the general behaviour of the flow near the equator. 

The remainder of this investigation is concerned with the solution of (8) subject to (9), and 
in order to provide a check for the finite-difference investigation presented later, the early 
motion for these equations was obtained in the form 

u' = T{fo(O) + T2f21(r/) + T4f ,  l(r/) + T6f61 (r/) + . . .  }, 

v' = go(r/) + T2g2,(r/) + T4g41(r/) + T6g61 (r/) + . . . .  

W r = T3/2{ho(r/) + T2h21 (r/) + T4h41(r/) + T6h61 (r/) + . . .  } ,  

(10) 

where 

fO(O) = f21 (0) =f41 (0) =f61 (0) = O, 

g0(0) - 1 = g21 (0) = g41 ( 0 )  = g61 ( 0 )  = 0, 

ho(0 ) = h21 (0) = h41 (0) = h61 (0) = 0, 

fo(~) = f2, (oo) =f , ,  (oo) =A~ (oo) = 0, 

go  (oo) = g2 ,  (oo) = g , , ( o o )  = g6~ (oo) = 0 .  

The resulting ordinary differential equations for the function f, g, h were integrated numerical- 
ly and the properties are given below. 
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fo'(0) = 0.820061, 

f2'~ (0) = 0.016515, 

f4'~ (0) = 0.000564, 

f6', (0) = 0.000019, 

go'(0) = -1.128379, 

g2'1 (0) = 0.027468, 

g,'l (0) = 0.000405, 

g6', (0) = 0.000004, 

h0(oo) = 0.167306, 

h2a (oo) = 0.010032, 

h4x (oo) = 0.000579, 

h6a (oo) = 0.000032. 

We note that the values for f0'(0), g0'(0), h0(oo) and g2'1 (0) given here agree, to the number 
of figures shown, with the analytical results given in (6). In view of the restricted convergence 
of such a series solution we proceed to a numerical solution using finite-differences in the next 

section. 

3. Finite-difference formulation 

Because of the singularity at T = 0 we first write equations (8) in terms of the independent 

variables rt, T where rt is defined as before. Hence with 

u'(z, r)= Tu,(rt, r), v'(z,Z)=v,(rt, Z), w'(z, 73= r3/  wi(rt, 73, 

the equations for Ul, vl, wl are 

OUl 8ul _4T2u~ + 2T2wl Oul _4v21 = b2ul 
4ul + 4 T ~  - 2rt ~ ~ art2 , 

4T 0vl ~ 0vl OVa 02vl (11) 
aT - z r t ~  + 2T2wx ~ - art----i-, 

awl _ 2 u 1 = 0 .  
ort 

The method followed in this investigation was to use these equations from T = 0 to some con- 

venient value of T, say To, and to proceed from T = To using a modified form of the equations 
(8). The modification consists of using a stretched variable normal to the boundary by writing 

1 

~" = log(1 + z/2 To ~ ), so that in terms of this variable equations (8) become 

au' e-gw' au ' e-2g p__~' ou~ 
O T  + - - - - - - -V u ' 2  - v ' 2  = ~ ' 2To~ a~- 4To [0~ "2 0~_J 

~v' e-~w' av' e-2g F~2v' av7 ~ 
a T + ~  - - -  _ _  2To 4To d 

e aw' 

2Tok a~ 
U'=0.  

(12) 
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The motivation for this non-uniform stretching comes from noting that typical boundary- 
layer prof'des have exponential-type decay away from the boundary and the transformation 
used was chosen to accomodate the decay region without the introduction of a large number of 

grid points. It has been used previously (Banks [8]) for boundary-layer calculations and was 
found very useful. We note that as a consequence of this stretching, interpolation was necessary 

at T = To in order to obtain values of the dependent variables at the grid points in the (~', T)- 

plane. However this process was checked by using different orders for the interpolating poly- 
nomial and confirming that any discrepancies were small. Comparison with the small T analysis 

of Section 2 is made later, but this interpolation procedure was also checked by comparing the 

results obtained by integrating (11) to some time T1 (> To) with the results derived by inte- 

grating equations (12), via the interpolated values at To. 
The sets of equations in both (11) and (12) were integrated using the Crank-Nicolson meth- 

od. This was used in a previous study (see Banks [8]) where full details are given. Briefly, the 

method assumes a grid in the 77, T (or ~', T)-plane and the various derivatives are replaced by 

their finite-difference approximations centred on a typical point {(i+ ½)k,jh}, where h,k  
denote the step-lengths in the r/,T directions respectively; a typical quantity f{(i + ½)k,jh} is 

then written as an average of f(ik,/h) and f{(i + 1)k, jh }. The continuity equation is integrated 

using the trapezoidal rule. The boundary conditions at inifinity are imposed at r/= Nh where 

N is chosen large enough so that not only does the appropriate function equal its boundary 

value but also the derivative is very small. The problem at each time step is thus reduced to the 

solution of 2N-2 non-linear algebraic equations for the unknowns ui+ 1 d,Vi+l,j(1 <~j ~<N-1)in 
terms of the known ui, j and vi,j; Newton's iterative method using Gaussian elimination was 

employed for this purpose. 
The procedure followed was to continue with the iteration until the magnitude of the dif- 

ference of two successive iterates be less than a specified tolerance, e , at which stage conver- 
gence is assumed and the time is advanced by one grid spacing. The value chosen for e in all the 
present calculations was 10 -6 . It may be anticipated that N = N(T) and we have adjusted N at 
each stage of the calculation to ensure that at the position where the boundary conditions were 

imposed the appropriate derivatives were also small. It was found, for example, that over the 
time interval (2,4.5) z varied from about 20 to 66 but it was only necessary to increase N by 

about 40%. 

4. Numerical results 

Preliminary numerical experiments were performed to get some impression of the overall char- 

acter. From these results it was possible to assess the position at which the outer boundary con- 
dition could be imposed and also the size of the time steps. It transpired that the finite-difference 

solution was not very sensitive to changes in the time step-length compared with changes in 

the space step-length, although we have nevertheless used the Richardson extrapolation proce- 
dure in both. This procedure was checked by using results from at least three different values 

¢t 

In cases like that presented here, it is possible that a more useful criterion away from the zeros is to con- 
sider the relative difference when comparing successive iterates. 
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TABLE 1 

The finite-difference results (F.D.) compared with four terms of the series solution in Section 2. 

~ Z l o  \ ~ ] o  

Series F.D. Series F.D. Series 

w'(~,T) 

F.D. 

0.25 0.20527 0 . 2 0 5 2 7  -1.12666 -•.12668 0.02099 0.02099 
1.0 0.41858 0 . 4 1 8 5 5  -0.55025 -0.55029 0 .17795  0.17791 
1.5 0.52682 0 . 5 2 6 8 1  -0.43455 -0.43460 0 .35488  0.35490 
2.0 0.63382 0 . 6 3 3 9 5  -0.35771 -0.35773 0 .61871  0.62016 
3.0 0.89047 0 . 8 9 6 1 9  -0.24399 -0.24418 

of the step-lengths. Further, the skin-friction components (au'/aZ)o, (av'/aZ)o and the nor- 

mal velocity at the edge of the boundary layer, w'(~,T),  were compared with the values from 

the series expansion of Section 2 and the agreement was satisfactory for T not too large. Table 

1 gives more details and it will be seen that the series solution for (au'/aZ)o and (av'/aZ)o is 

convergent for T -  2 although that for w'(~, T) is not quite so good. 
The iterations in the numerical integration converged satisfactorily at each time step for 

T ~< 4.57 (the extent to which the integration was carried out) but the corrections, calculated 

using the Richardson extrapolation procedure, were increasing in magnitude as T increased. We 

have given here only the results for T ~< 4.56, beyond which the accuracy becomes doubtful. 

A number of  facts were evident from the preliminary programme tests. It was noted that the 

maximum value of the u'-velocity component was increasing as was the w'-velocity at the edge 

44O 

4 ~ ~ 

4 8 12 16 20 24 28 32 ~16 

Figure 1. Meridional velocity u' vs. z for various times as indicated. 
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of the boundary layer. In view of this the computer programme was modified to calculate the 
maximum value o f  u, say u m , and also its location, say z m . Figures 1 ,2  and 3 show the varia- 

t t 

tion o f  u', v ,  and w respectively for various times, while Figure 4 gives the variation o f  

[u'(z m, T)] -1 = (u m)-] say, and [w'(oo, T)]-2/3 = (w")-2/3 say. For T > 4 the variation in the 
latter two quantities in each case is almost linear and we give the relevant numerical results in 
Table 2. In view of the variation of u'(z m, T) and w'(oo, T) we show the variation OfZm 2 with 

10 

0.8 

06  

0 4  

02  

Figure 2. 

456 

4 8 12 16 20 24 28 32 36 
z 

Azimuthal velocity v' vs. z for various times as indicated. 

~ o  

~t  

5(10 

0 d 

Figure 3. 

4.40 

430 

4 8 12 16 20 2~ -~8 

Radial velocity w'  vs. z for various times as indicated. 

32 36 
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41 4.2 4.3 4.4 4 5  
T 

2 

Figure 4. The variation of  (u~)  -1 and (w-)- '~is  shown by circles and squares respectively. Straight (contin- 
uous) lines have been drawn for comparison in each case. The value o f ( w ' )  --~ from the asymptotic results of 
Section 5 are shown by a broken line. 

.09 

08  

.07 

.06 

.05 

.C4 

.03 

.02 

01 

D - 2  

4.1 4.2 4.3 4.4 4.$ 
T 

Figure 5. The variation of  z;~ and D -2 with T. The values of  z;~ from the asymptotic results of  Section 5 are 
shown by a broken line. 
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T in Figure 5. At each time step we have also calculated the dimensionless displacement thick- 

ness associated with the azimuthal velocity component. We write D = f o  v'dz and evaluate the 

integral using the trapezoidal rule. It transpires that D is another increasing function of  T, and 

we have plotted D -2 as a function of  T also in Figure 5. Figure 6 gives the variation of  the skin- 

friction components (au'/aZ)o, (av'/aZ)o and the latter is also tabulated in Table 2 to show 

the linearity for T > 4; we note that both components appear to be bounded and non-zero for 

T > 0, and with no exceptional behaviour. 

2.; 

(~)o 
2.1 

0.07 

O.O8 

o n  

Ol2 

Ol3 

-0,14 

4.1 

Figure 6. 

4.2 4.3 4 4  4.5 T*  
7 

au(~z' ) and (av ']  with T. The variation of the skin-friction components o \az ]0 

TABLE 2 

T [u'(z m, 731-1 [w'(o., 731-2/3 
az ] o  

4.00 0.58768 0.22109 0.1446 
4.10 048256 0.18148 0.1347 
4.20 0.37916 0.14247 -0.1248 
4.30 0.27714 0.10398 -0.1150 
4.34 0.23662 0.08871 -0.1111 
4.38 0.19626 0.07351 -0.1072 
4.42 0.15603 0.05838 - 0.1033 
4.44 0.13595 0.05084 - 0.1013 
4.46 0.11588 0.04331 -0.0994 
4.48 0.09585 0.03580 -0.0975 
4.50 0.07581 0.02830 0.0955 
4.52 0.05580 0.02082 -0.0936 
4.54 0.03581 0.01335 -0.0917 
4.56 0.01579 0.00588 -0.0897 
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From the results presented here it seems reasonable to conclude that a singularity develops 

at a finite time T*. Linear interpolation based on the values of[u'(Zm, T)] -I and [w'(oo, T)]-2/3 

at T = 4.52 and T = 4.54 gives the same value of T*, viz. T* = 4.5758. We do not claim that this 

value is accurate for the boundary-layer problem posed in Section 2, but rather that it is fairly 

accurate for the results presented here, and in any comparison with analytical work only the 

latter is relevant. It is of interest to note that these results suggest a breakdown before the 

sphere has completed one revolution, and we may consequently anticipate that these results 

are applicable to the flow in the vicinity of the equator. It may also be opportune to note that 

the breakdown found by Telionis and Tsahalis for the impulsively started circular cylinder 

occurred before the cylinder had moved a distance equal to its diameter. 

Attention is drawn to the variation of z,Zn 2 and D -2 with T in Figure 5; these results are highlrv 

suggestive of both z m and D becoming singular and are consistent with a scaling z ~ (T* - T)  -~ 

as T-~ T*. However we find that z m and D are more accurately represented in the interval 
T= 4.10 to T = 4.56 by the functions (T* - T) -2/3 and (T* - T) -3/s respectively. The former 

is inconsistent with other results and so is rejected as a possible scaling. In Section 5, where we 

consider an analytic description, we adopt the simplest hypothesis viz. z % (T* - T)-¼. 

Figure 2 suggests that v' remains bounded for all T <  T*, and indeed it can be shown that 

the v'-velocity profile must be monotonic in z so that a maximum in v' cannot form in the 

interval 0 < z < o o .  For if at some time a local maximum did form then we can infer by con- 

tinuity that at an earlier time there would exist a value of z, say Zl, at which 

az l z, = ~ az 2 I z, = 0  

and with (a 3 v'/az 3)z ' < 0. However, the momentum equation for v' then implies that 

a (av'  <o 
aT ~ a z ] z ,  

and so we conclude that a prof'de with a local maximum cannot develop. This latter property 

is not necessarily a property of the t'mite-difference equations, and the computer programme 

was modified to include a test for such a possibility. When non-monotonic behaviour occur- 

red in the v'-profile the integration was terminated and the occurrence was taken to imply that 

the step lengths were too large. 
After the numerical results presented above had been obtained we learned that Bodonyi 

and Stewartson [9] had encountered similar behaviour in the study of an unsteady laminar 
boundary layer on a rotating disc in a counter-rotating fluid. They were able to proceed to a 
partial analytical description which seemed to describe the major part of the flow field. We 

proceed likewise here. 
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5. Analytical description 

In view of  the properties presented above we investigate the possibility of  an asymptotic solu- 

tion in which 

w' = r -3/~ / t ( z ,  r) ,  v' = a ( z ,  T) 

t 

where r = T* -- T a n d Z  = z r  ~ . The equations for the functions H (Z, r) and G(Z, r) are 

(13) 

H z - THzr - ~ZHzz' + H H z z  - H~ - r2G 2 = T 2 HZZ z ,  

1 = T2 rG r - i Z G z  + HG z G z z ,  

(14) 

and the boundary conditions (9) imply that 

t t (0 ,  r) = ~/z(0,  r) -- 0, o ( 0 ,  r) -- 1, 

Hz(Z, r)-+O, G(Z, r)-~O as Z o o .  

The initial condition is replaced by the requirement that H and G join on to the numerical 

results o f  Section 4 for ~ ,~ 1. 
Note however that since 0 ~< v'~< 1 we may anticipate, and the first of  equations (14)con-  

firms, that the role of  G(Z, r) in the determination of  H(Z,  r) will be weak for r ,~ 1 over most 
t l 

of  the flow field. We have re-plotted the u'  w', v velocity prof'llesin the , fo rmru  (Z, r), r3/2w'(Z, 

T) and v'(Z, r) for various values of  T; these are given in Figures 7, 8 and 9 respectively and are 

IO 

08 

06 

04 

0.: 

1 2 3 '~ 5 6 v =~! 

Figure 7. The variation of ru' with Z = zr ~ for various times as in0icated. The dots represent H' o = 
(1-cosOZ) (see equation (16)) with ~ = 0.71. 
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suggestive of  the probable existence o f  a simple similar solution valid over most of  the flow 

field. We therefore proceed to look for a solution of  the form of  (13 )wi th  

H(Z, z) = Ho (Z) + rPH, (Z) + . . . .  (15) 

G(Z, ¢) = Go(Z) + rqGl(Z)  + . . . .  

where p and q will be chosen later. Because of  the passive role played by G in the determination 

of  H we consider first the equation for H. 

r ~ w '  

4.O 

3.0 

2.0 

10  

I 2 3 4 5 6 7 ~ 

,3 

Figure 8. The variation of r -~ w' with Z = zr -~ for various times as indicated. The results of calculations using 
equation (16) with ~ = 0.71 are shown by dots. 

1.0 

v ~ 

0.8 

I 2 3 4 S 6 

e 

Figure 9. The variation of v' with Z = z¢ ~ for various times as indicated. 
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Substituting (15) into the first equation of (14) and equating coefficients of  r ° we obtain 

17"~" no 2 +Ho'=0. (Ho - ~ , - - 0  - 

The general solution is 

1 
H o = i Z + A o sin(/3Z + 7), 

where Ao,/3, 7 are constants and we have assumed 32 > 0 in order to reject exponential forms. 

One boundary condition is that Ho(0) = 0 and, in order that u'  be bounded near z = 0 as r ~ 0, 

we also require H'o(0) = 0. These boundary conditions imply that ~/= 0, A o = -~/3. Hence 

/40 = ½ z  - ½/3-' s in/3z ,  (16) 

where/3 is an undetermined constant the occurrence of which is common in such asymptotic 

expansions: the usual practice is to choose/3 suitably so that the form of rio 'fits' the numerical 

results as T ~ T* as closely as possible. It is clear that since (16) is an inviscid solution it is not 

uniformly valid: conditions at z = 0 and as z ~ oo are not satisfied; in particular the first of the 

equations in (8) implies that b2u/bz2 = -1  at z = 0 but this cannot be satisfied by (16). We 

therefore envisage viscous regions bounding the inviscid region. This is similar to the behaviour 

found by Bodonyi and Stewartson [9]. Ockendon [10] has discussed the steady flow due to a 

rotating disc with suction and found that there was an inviscid region bounded by thin viscous 

layers. The boundary condition as z ~ oo is that u' -+0 and so in the relevant viscous region we 

require the appropriate flow property to match on to (16) and also satisfy u'  -*0 at the outer 

edge. For this to be possible we require u'  to be bounded as r ~ 0 in this region and Figures 

7 and 8 suggest that the match with (16) must be made at/3Z = 2rr. 

The next stage in applying the method of matched asymptotic expansions is to consider 

those regions where the above first term fails to be a good approximation. Unfortunately we 
do not know the structure of the solution in these regions and so we are unable to proceed in a 

conventional manner. However it is possible to test the form of (16) by comparing with the 

numerical results after suitably choosing/3. Because of the similarity of  the H z - profdes for 

0.2 < H z ~< 1, as demonstrated in Figure 7, we choose/3 by requiring that the difference in the 
1 two values of  Z at which H z = i be the same in H'o and in the numerical results. On carrying 

out the details we fred/3 ~ 0.71 and for purposes of comparison have plotted Ho and fro, with 
this value of/3, in Figures 8 and 7 respectively. The general agreement between the numerical 

results of  Section 4 and the analytical result (16) is sufficiently encouraging for us to proceed 

with this expansion, although the practice of developing a single non-uniformly valid asymptotic 
expansion is not without its attendant dangers of  course. 

If  we ignore the effects of the two viscous regions at Z = 0 and Z = 27r//3 and proceed to higher- 
order terms in the inviscid solution, we find that on equating terms of O(rP) the equation for 

HI (Z) is 

~Z)H'~ + (1 - p  - 2H~)H'~ +Ho H~ = 0 Ho - i , ,, 
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providing p < 2. The latter is consistent with the numerical results. One complementary func- 

tion is (2p - cos/aZ) and to ensure that no fractional powers of  Z arise in the behavior for small 
1 Z, the smallest value o f p  isp = i .  The general solution is then 

H1 =A1(1 - cos/aZ) +B1 {(1 - cos/aZ) log(1 - cos/aZ) + 2} 

and HI (0) = 0 implies B1 = 0. Hence 

Ha = A1 (1 - cos/~Z) (17) 

• t ? which we note satlsfiesHl (0) = 0 and HI  (21r[~) = 0. A 1 is a second undetermined constant. The 

next term in the expansion of  H(Z, r) we take to be rH2(Z) and the equation for the deter- 

mination of  H2 (Z) is 

(Ho - ~Z)H'; - 2fro ~ + H'; H2 =1-1'12 - HIH~,  

the general solution of  which is 

//2 =/3A~ sin/3Z + A2 (2 - cos/3Z) + B2{/3Z(2 - cos/3Z) + 3 sin/3Z}. 

The conditions H 2 (0) = Hi  (0) = 0* are satisfied provided A 2 = 0, B2 = -/t,4 ] /4 ,  and so 

1 2 H2 = ~/3A1 { sin 13Z - /~Z(2 - cos/3Z)}. (18) 

We note that/4'2 (27r//3) = 0. 

We have proceeded to the next term which we have taken to be ~.3/2 Ha(Z): the equation for 

/-/3 is 

~Z)I-f~ - (~ + 2/-/'o)ff3 + H'~ Ha = 2H', H'2 - H,  H2 - H2H1,  
g _ 1 ., 1 t t t  t r  

the general solution of  which is 

Ha - - -  (4cos/~Z + 3(aZs in (aZ)+Aa(3-cos (aZ)+Baf (Z) ,  
6 

where 

f ( Z )  = (3 - cos/aZ) log(1 - cos/aZ) + 8. 

,We impose Ba = 0 to avoid a singularity at cos/aZ = 1, and satisfying//3(0) = 0 implies that 

Aa =/32A ] /3 .  Hence 

Ha =/32A] (1 - cos/aZ - ½(aZsin[aZ), (19) 

which we note satisfies Hi  (0) = 0 but that/-/'3 (27r//~) 4: 0. 

* B 2 appears to be another undetermined constant. The numerical results suggest that B 2 is evaluated by 
satisfying H'~ (0) = 0. 
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The formal expansion of  H(Z, r)  up to the stage considered here is independent of  the 

azimuthal velocity component ,  although if the next term is taken to be r2H4(Z) then viscous 
and three-dimensional effects enter into the determination of  H4(Z). However, we content our- 

selves here with the expansion up to and including the term of  O(r 3/2) as derived above and 

note that there are two undetermined constants/3 and A 1 arising. We summarise these results by 
giving the expansion of  w': 

I I IR2A 2 w' =/3-1 r -3 /2  (/3Z-sin/3Z) +/3A1 (1 -cos /3Z)r~ + ~ ,  --1 {sin/3Z-/3Z(2-cos/3Z) }r 

+/3 A 1 (1 - c o s / 3 Z -  ~/3Zsin/3Z)r 312 + . . . .  (20) 

We have tabulated H(Z, r) and Hz(Z  , r) using the four terms, for various values of/3 and A1, 

and found that with/3 = 0.71 and A1 = 3.2 the analytical results join onto the numerical re- 

suits in a satisfactory manner. For comparison, we have plotted H(Z, T) and Hz(Z  , r) in Fig- 

ures I 1 and 10 respectively for T = 4.56 (r  = 0.0158) and the similarity in each case is most 

convincing. The agreement for larger values of  r is qualitatively good, although as might be 

expected the quantitative agreement gets progressively worse as r increases. From these asymp- 

totic results we fred that 

(Um) - ]  = r + o ( r S / 2 ) ,  ( w ' ) - 2 / 3  =(311r)2/3(r+/32A21 r2/3 + . . .  ) 

and 

r 3/2/Tr + . .  ) .  z m  2 = (/3/rr) 2 (7" + 43A 1 

1 o  

Hz 

0 8  

0 6  

0 4  

0 2  

o = , , , , t 

I 3 4 5 6 7 
2 

Figure 10. The variation of H Z = ru' with Z at T = 4.56. The numerical results are shown by a continuous 
line and the results from the asymptotic analysis of Section 5 are indicated by dots. 
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f 

4 

3 

2 

t 

I 2 3 4 ~ 6 7 z 

3 

Figure 11. The variation of H = r~w ' with Z at T = 4.56. The numerical results are shown by a continuous 
line and the results from the asymptotic analysis of Section 5 are indicated by dots. 

i 1 The almost linear variation of  ( t /m)-  with r is consistent with the numerical results which are 

shown in Figure 4 and Table 2. The variation of  ( w ' )  -2/3 and Zm2 with r given by the analytic 

results is shown in Figures 4 and 5 respectively, and the agreement is again good for r small. 

Proceeding to the second equation in (14) we find that substitution of  the expansions in 

(15) gives rise to 

1 r 
(Ho - ~Z)Go = 0 

on equating coefficients of  r ° . The solution of  this equation is Go = ao, a constant. A reference 

to Figure 9 suggests that to o(1) this is consistent and that a0 ~ 0.7, although the approxima- 

tion clearly fails near z = 0 and as z ~ oo. Whether ao is another undetermined constant or is 

evaluated at a later stage in the matching is not known. 

If  we proceed with this inviscid expansion and equate coefficients of  r q we obtain 

H _ 1 t ~Z)G1 - q  Gi =0, 

the general solution of  which is G1 = al {cot (~Z/2)} 2q where al is a constant. This form of  GI 

is clearly singular at Z = 0 and Z = 2rt//~ for all q > 0, and further progress with this expansion 

is unlikely to be of  any value. There are a number of  possible explanations for this breakdown 

but we have been unable to resolve the difficulty. 
However, the agreement between the numerical and analytical results for w' and u '  as dis- 

played in Figures 10 and 11 is so good that we can infer that the existence o f  the singularity is 
confirmed, and that its structure is partly given by the expansion presented here. 
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6. Discussion 

Although the unsteady problem discussed here appears to be substantially different from that 
of the boundary-layer development on an impulsively started circular cylinder, nevertheless 

both do involve the interaction of two opposing boundary layers. In the above the position of 

this juncture of the two equal but oppositely moving boundary layers is f'Lxed for all time, 
whereas the separating streamline in the cylinder problem moves forward in the direction to- 

wards the front stagnation point. Further, the separating streamline is presumably not, even 
locally, a line of symmetry of the flow pattern. However, it is of interest to note that our re- 
suits imply that the velocities near to the equatorial plane are of the form u --- a~2cos0(T*-T)- l 

and w ~ (u~2) ~ (T*-T)  -3/2 as T ~ T*, and in a numerical integration of (1) subject to (2) the 
term of most significance near the equator will clearly be w; this is also the dominant effect 

reported by Telionis & Tsahalis [4]. 

Appendix 

We here discuss the boundary-layer development at the equator of an oblate spheroid rotating 

about its axis. Conventional oblate spheroidal coordinates t, 72, ¢ are first introduced with 

r(t, r/, ¢) = (ccosht sinr/cos~b, ccosht sinr/sine, csinht cos,/) (0 ~< 72 ~< ~b, 0 ~< ~b ~< 2zr). The bound- 

ary-layer equations for the flow are then expressed in terms of coordinates r/, ¢, x3 where the 

position vector R(r/, ¢, x3) = r(t0, r/, ¢) +x3 n and n is the outwardly directed unit vector nor- 

mal to the oblate spheroidal surface defined by t = to. Then, with u, o, w representing velocity 
components in directions corresponding to 72, ¢, xa increasing, and with the further assumption 

of rotational symmetry of the flow, the boundary-layer equations are: 

0u u 8u 0u v2cotr/ 82u 
--+ - - + W - -  -- = P -  

Ot c(s inh2 to + cos2r/) ~ Or/ 0xa c (sinh 2 to + cos2r/fi bx~ ' 

Ov u Ov by uv cotr/ b2v 

8-"~ + c (sinh 2 to + cos 2 r/)~ 3"-'~ + w 3x"'-3 + c (sinh 2 to + cos 2 r/~ = v 3x] ' 

Ow u cotr/ 1 bu 
- -  + + = 0 ,  
8x3 c(sinh 2 to +cos2r/) ~ c(si nh2 t0 +cos2r/) ~ 0r/ 

subject to 

t < O :  u = v = w = O ,  

t > 0 :  
u = w = O ,  v=c~2coshtosinr/, on x3=O,  

U,v--+O as x3 .--~ oo. 

The radius at the equator of the oblate spheroid is ccoshto which we identify with a, the radius 
of the sphere for purpose or comparison. 
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Following the procedure adopted in the spherical case let 

u -- cosr~ • ~(x3, t) + . . . .  

v =~(x3,  t) + . . . ,  

w = ~ (xa, t) + . . . .  

and in the equations for ~, ~, ~ so obtained set 7? = rr/2 to obtain local equations valid in the 
neighbourhood of  the equator. The change of  variables 

= cI2cosh~0 • u', 

= c~2cosh~o • v', 

= (v~2coth~o)4 w', 

x3 = (v~2 - l  tanh~o)k z, 

t = tanh~o • T ~  - 1 ,  

yields equations and boundary conditions for u',  v', w identical to (8) and (9) for the sphere. 
Thus the solution of  the local problem for the oblate spheroid is like that for the sphere with a 
suitable scaling. Moreover, since I tanh~ o I ~< 1 it follows that if the singularity in the sphere 

problem arises at time T = T*, then for an oblate spheroid rotating with the same angular 
velocity ~2 the breakdown in real time will be earlier by a factor tanh~o. In particular, if ~o is 

very small corresponding to an almost circular disc, the breakdown occurs very soon after the 
impulsive start. This is in agreement with the intuitive impressions that one may reasonably 
form. 

The analysis for the prolate spheroid follows the same general pattern. With the usual pro- 
late spheroidal coordinates (~, r/, ¢) and the spheroidal surface given by ~ = ~o, it is found that 
the appropriate time scaling is t = coth~o • T ~ - l  corresponding to a slowing down of  the 
development relative to that of  the spherical case. 
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